Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context. Radio pulsars can be used for many studies, including the investigation of the ionized interstellar medium and the solar wind via their dispersive effects. These phenomena affect the high-precision timing of pulsars and are among the main sources of noise in experiments searching for low-frequency gravitational waves in pulsar data. Aims. In this paper, we compare the functionality and reliability of three commonly used schemes to measure temporal variations in interstellar propagation effects in pulsar timing data. Methods. We carried out extensive simulations at low observing frequencies (100–200 MHz) by injecting long-term correlated noise processes with power-law spectra and white noise, to evaluate the robustness, accuracy, and precision of the following three mitigation methods: epoch-wise (EW) measurements of interstellar dispersion; the DMX method of simultaneous, piece-wise fits to interstellar dispersion; and DM GP, which models dispersion variations through Gaussian processes using a Bayesian analysis method. We then evaluated how reliably the input signals were reconstructed and how the various methods reacted to the presence of achromatic long-period noise. Results. All the methods perform well, provided the achromatic long-period noise is modeled for DMX and DM GP. The most precise method is DM GP, followed by DMX and EW, while the most accurate is EW, followed by DMX and DM GP. We also tested different scenarios including simulations ofL-band times of arrival and realistic DM injection, with no significant variation in the obtained results. Conclusions. Given the nature of our simulations and our scope, we deem that EW is the most reliable method to study the Galactic ionized media. Follow-up works should be conducted to confirm this result via more realistic simulations. We note that DM GP and DMX seem to be the best-performing techniques in removing long-term correlated noise, and hence for gravitational wave studies. However, full simulations of pulsar timing array experiments are needed to support this interpretation.more » « less
-
ABSTRACT We conducted a GPU-accelerated reprocessing of $$\sim 87~{{\ \rm per\ cent}}$$ of the archival data from the High Time Resolution Universe South Low Latitude (HTRU-S LowLat) pulsar survey by implementing a pulsar search pipeline that was previously used to reprocess the Parkes Multibeam Pulsar Survey (PMPS). We coherently searched the full 72-min observations of the survey with an acceleration search range up to $$|50|\, \rm m\, s^{-2}$$, which is most sensitive to binary pulsars experiencing nearly constant acceleration during 72 min of their orbital period. Here we report the discovery of 71 pulsars, including six millisecond pulsars, of which five are in binary systems, and seven pulsars with very high dispersion measures (DM $$\gt 800 \, \rm pc \, cm^{-3}$$). These pulsar discoveries largely arose by folding candidates to a much lower spectral signal-to-noise ratio than in previous surveys and by exploiting the coherence of folding over the incoherent summing of the Fourier components to discover new pulsars as well as candidate classification techniques. We show that these pulsars could be fainter and on average more distant as compared with both the previously reported 100 HTRU-S LowLat pulsars and the background pulsar population in the survey region. We have assessed the effectiveness of our search method and the overall pulsar yield of the survey. We show that through this reprocessing we have achieved the expected survey goals, including the predicted number of pulsars in the survey region, and discuss the major causes why these pulsars were missed in previous processing of the survey.more » « less
-
We report the discovery of ten new pulsars in the globular cluster Terzan 5 as part of the Transients and Pulsars with MeerKAT (TRAPUM) Large Survey Project. We observed Terzan 5 atL-band (856–1712 MHz) with the MeerKAT radio telescope for four hours on two epochs, and performed acceleration searches of 45 out of 288 tied-array beams covering the core of the cluster. We obtained phase-connected timing solutions for all ten discoveries, covering nearly two decades of archival observations from the Green Bank Telescope for all but one. Highlights include PSR J1748−2446ao which is an eccentric (e = 0.32) wide-orbit (orbital periodPb = 57.55 d) system. We were able to measure the rate of advance of periastron (ω̇) for this system allowing us to determine a total mass of 3.17 ± 0.02 M⊙. With a minimum companion mass (Mc) of ∼0.8 M⊙, PSR J1748−2446ao is a candidate double neutron star (DNS) system. If confirmed to be a DNS, it would be the fastest spinning pulsar (P = 2.27 ms) and the longest orbital period measured for any known DNS system. PSR J1748−2446ap has the second highest eccentricity for any recycled pulsar (e ∼ 0.905) and for this system we can measure the total mass (1.997 ± 0.006 M⊙) and estimate the pulsar and companion masses, (1.700−0.045+0.015 M⊙and 0.294−0.014+0.046 M⊙, respectively). PSR J1748−2446ar is an eclipsing redback (minimumMc ∼ 0.34 M⊙) system whose properties confirm it to be the counterpart to a previously published source identified in radio and X-ray imaging. We were also able to detectω̇for PSR J1748−2446au leading to a total mass estimate of 1.82 ± 0.07 M⊙and indicating that the system is likely the result of Case A Roche lobe overflow. With these discoveries, the total number of confirmed pulsars in Terzan 5 is 49, the highest for any globular cluster so far. These discoveries further enhance the rich set of pulsars known in Terzan 5 and provide scope for a deeper understanding of binary stellar evolution, cluster dynamics and ensemble population studies.more » « less
-
ABSTRACT The HTRU-S Low Latitude survey data within 1° of the Galactic Centre (GC) were searched for pulsars using the Fast Folding Algorithm (FFA). Unlike traditional Fast Fourier Transform (FFT) pipelines, the FFA optimally folds the data for all possible periods over a given range, which is particularly advantageous for pulsars with low-duty cycles. For the first time, a search over acceleration was included in the FFA to improve its sensitivity to binary pulsars. The steps in dispersion measure (DM) and acceleration were optimized, resulting in a reduction of the number of trials by 86 per cent. This was achieved over a search period range from 0.6 to 432-s, i.e. 10 per cent of the observation time (4320s), with a maximum DM of 4000 pc cm−3 and an acceleration range of ±128 m s−2. The search resulted in the re-detections of four known pulsars, including a pulsar that was missed in the previous FFT processing of this survey. This result indicates that the FFA pipeline is more sensitive than the FFT pipeline used in the previous processing of the survey within our parameter range. Additionally, we discovered a 1.89-s pulsar, PSR J1746-2829, with a large DM, located 0.5 from the GC. Follow-up observations revealed that this pulsar has a relatively flat spectrum (α = −0.9 ± 0.1) and has a period derivative of ∼1.3 × 10−12 s s−1, implying a surface magnetic field of ∼5.2 × 1013 G and a characteristic age of ∼23 000 yr. While the period, spectral index, and surface magnetic field strength are similar to many radio magnetars, other characteristics such as high linear polarization are absent.more » « less
-
Context.NGC 1068 is the most observed radio-quiet active galactic nucleus (AGN) in polarimetry, yet its high-energy polarization has never been probed before due to a lack of dedicated polarimeters. Aims.Using the first X-ray polarimeter sensitive enough to measure the polarization of AGNs, we want to probe the orientation and geometric arrangement of (sub)parsec-scale matter around the X-ray source. Methods.We used the Imaging X-ray Polarimetry Explorer (IXPE) satellite to measure, for the first time, the 2–8 keV polarization of NGC 1068. We pointed IXPE at the target for a net exposure time of 1.15 Ms, in addition to using twoChandrasnapshots of ∼10 ks each in order to account for the potential impact of several ultraluminous X-ray sources (ULXs) within IXPE’s field of view. Results.We measured a 2–8 keV polarization degree of 12.4% ± 3.6% and an electric vector polarization angle of 101° ± 8° at a 68% confidence level. If we exclude the spectral region containing bright Fe K lines and other soft X-ray lines where depolarization occurs, the polarization fraction rises to 21.3% ± 6.7% in the 3.5–6.0 keV band, with a similar polarization angle. The observed polarization angle is found to be perpendicular to the parsec-scale radio jet. Using a combinedChandraand IXPE analysis plus multiwavelength constraints, we estimated that the circumnuclear “torus” may sustain a half-opening angle of 50–55° (from the vertical axis of the system). Conclusions.Thanks to IXPE, we have measured the X-ray polarization of NGC 1068 and found comparable results, both in terms of the polarization angle orientation with respect to the radio jet and the torus half-opening angle, to the X-ray polarimetric measurement achieved for the other archetypal Compton-thick AGN: the Circinus galaxy. Probing the geometric arrangement of parsec-scale matter in extragalactic objects is now feasible thanks to X-ray polarimetry.more » « less
-
ABSTRACT We report observed and derived timing parameters for three millisecond pulsars (MSPs) from observations collected with the Parkes 64-m telescope, Murriyang. The pulsars were found during reprocessing of archival survey data by Mickaliger et al. One of the new pulsars (PSR J1546–5925) has a spin period P = 7.8 ms and is isolated. The other two (PSR J0921–5202 with P = 9.7 ms and PSR J1146–6610 with P = 3.7 ms) are in binary systems around low-mass ($${\gt}0.2\, {\rm M}_{\odot }$$) companions. Their respective orbital periods are 38.2 and 62.8 d. While PSR J0921–5202 has a low orbital eccentricity e = 1.3 × 10−5, in keeping with many other Galactic MSPs, PSR J1146–6610 has a significantly larger eccentricity, e = 7.4 × 10−3. This makes it a likely member of a group of eccentric MSP–helium white dwarf binary systems in the Galactic disc whose formation is poorly understood. Two of the pulsars are co-located with previously unidentified point sources discovered with the Fermi satellite’s Large Area Telescope, but no γ-ray pulsations have been detected, likely due to their low spin-down powers. We also show that, particularly in terms of orbital diversity, the current sample of MSPs is far from complete and is subject to a number of selection biases.more » « less
-
We report on a comprehensive analysis of simultaneous X-ray polarimetric and spectral data of the bright atoll source GX 9+9 with the Imaging X-ray Polarimetry Explorer (IXPE) and NuSTAR . The source is significantly polarized in the 4–8 keV band, with a degree of 2.2% ± 0.5% (uncertainty at the 68% confidence level). The NuSTAR broad-band spectrum clearly shows an iron line, and is well described by a model including thermal disc emission, a Comptonized component, and reflection. From a spectro-polarimetric fit, we obtain an upper limit to the polarization degree of the disc of 4% (at the 99% confidence level), while the contribution of Comptonized and reflected radiation cannot be conclusively separated. However, the polarization is consistent with resulting from a combination of Comptonization in a boundary or spreading layer, plus reflection off the disc, which significantly contributes in any realistic scenario.more » « less
-
ABSTRACT X Persei is a persistent low-luminosity X-ray pulsar of period of ≈ 835 s in a Be binary system. The field strength at the neutron star surface is not known precisely, but indirect signs indicate a magnetic field above 1013 G, which makes the object one of the most magnetized known X-ray pulsars. Here we present the results of observations X Persei performed with the Imaging X-ray Polarimetry Explorer (IXPE). The X-ray polarization signal was found to be strongly dependent on the spin phase of the pulsar. The energy-averaged polarization degree in 3–8 keV band varied from several to ∼20 per cent over the pulse with a phase dependence resembling the pulse profile. The polarization angle shows significant variation and makes two complete revolutions during the pulse period, resulting in nearly nil pulse-phase averaged polarization. Applying the rotating vector model to the IXPE data we obtain the estimates for the rotation axis inclination and its position angle on the sky, as well as for the magnetic obliquity. The derived inclination is close to the orbital inclination, reported earlier for X Persei. The polarimetric data imply a large angle between the rotation and magnetic dipole axes, which is similar to the result reported recently for the X-ray pulsar GRO J1008−57. After eliminating the effect of polarization angle rotation over the pulsar phase using the best-fitting rotating vector model, the strong dependence of the polarization degree with energy was discovered, with its value increasing from 0 at ∼2 keV to 30per cent at 8 keV.more » « less
-
ABSTRACT We present an X-ray spectropolarimetric analysis of the bright Seyfert galaxy NGC 4151. The source has been observed with the Imaging X-ray Polarimetry Explorer (IXPE) for 700 ks, complemented with simultaneous XMM–Newton (50 ks) and NuSTAR (100 ks) pointings. A polarization degree Π = 4.9 ± 1.1 per cent and angle Ψ = 86° ± 7° east of north (68 per cent confidence level) are measured in the 2–8 keV energy range. The spectropolarimetric analysis shows that the polarization could be entirely due to reflection. Given the low reflection flux in the IXPE band, this requires, however, a reflection with a very large (>38 per cent) polarization degree. Assuming more reasonable values, a polarization degree of the hot corona ranging from ∼4 to ∼8 per cent is found. The observed polarization degree excludes a ‘spherical’ lamppost geometry for the corona, suggesting instead a slab-like geometry, possibly a wedge, as determined via Monte Carlo simulations. This is further confirmed by the X-ray polarization angle, which coincides with the direction of the extended radio emission in this source, supposed to match the disc axis. NGC 4151 is the first active galactic nucleus with an X-ray polarization measure for the corona, illustrating the capabilities of X-ray polarimetry and IXPE in unveiling its geometry.more » « less
An official website of the United States government
